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Data-driven prediction of relative density for laser powder bed fusion parts: machine Design and Modeling of Differential Capacitive Hexagonal Beam based MEMS Accelerometer
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Relative density predictive tool for L-PBF using machine learning Comparison of performance metrics for training and testing
framework of linear regression and hybrid GB-PSO model
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1. Using a Data-driven ML approach and SHAP analysis, optimized process parameters for AM (L-PBF) are obtained. The model Modeling in MEMS+ -~ I | Input acceleration (g) Input acceleration (x) Width (im)
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captures data complexities and nonlinearities. : : : : : : .
P P 1. Frequency tuning of MEMS accelerometer is achieved by varying the width of the suspension springs

2. The hybrid GB-PSO ML model outperformed various traditional, hierarchical, and hybrid models. L : : . . : : :
2. There has been substantial improvement in mechanical and capacitive sensitivities by using hexagonal suspensions springs

Publication: Publication:

1. A Generalized Machine Learning Framework for Data-Driven Prediction of Relative Density in Laser Powder Bed Fusion Parts. Submitted to 7he International 1. Design and Modeling of Differential Capacitive Hexagonal Beam Based MEMS Accelerometer," 2024 Symposium on Design, Test, Integration and Packaging of
Journal of Advanced Manufacturing Technology (Under Review). MEMS/MOEMS (DTIP), Dresden, Germany, 2024, pp. 1-6,

Progressive damage analysis of open-hole CFRP laminates under combined tension-shear Modelling and optimization of compound lever-based displacement amplifier in a MEMS
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1. A compliant displacement amplifier based single-axis MEMS accelerometer is designed.
2. Sensitivity of the MEMS accelerometer, nonlinearity in the response have been determined through Simulink based analysis.
LaRC0S criteria used for intra-laminar damage initiation. 3. It can provide nonlinearity less than 0.5 % for the input acceleration up to 6 g. For comparatively smaller in-plane size of proof

B-K law used for inter-laminar damage initiation. mass, larger FOM has been achieved.

Publication:
1. Modelling and optimization of compound lever-based displacement amplifier in a MEMS accelerometer. Microsystem Technologies (2024): 1-20.

Intra-laminar matrix

Intra-laminar fiber
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Experimental vs FEM failure envelope

Linear degradation is assumed after damage initiation for both intra and inter laminar damage.
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1. Topology optimization (TO) is a computational approach used to optimize material distribution within a given design domain, driven by
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~+Sample 3 IRS + LSP 2. With the rapid advancements in additive manufacturing, these optimized, complex designs can now be fabricated more easily, fuelling a

Residual Stress (MPa)

specific performance objectives and constraints.

Ll EXpalamEnL Beaipa At Effect of milling-induced TRS on LSP-

Axisymmetric FE model ) )
induced residual stress

growing demand for TO across various applications.

1. Pre-existing subsurface Tensile Residual Stresses (TRS) are introduced from Milling operations. Publications based Codes

1. HoneyTop90: A 90-line MATLAB code for topology optimization using honeycomb tessellation:

2. TOPress: a MATLAB implementation for topology optimization of structures subjected to design-dependent pressure loads:
3.  SoRoTop: a hitchhiker's guide to topology optimization MATLAB code for design-dependent pneumatic-driven soft robots:
4. PyHexTop: a compact Python code for topology optimization using hexagonal elements:

2. Pre-existing TRS decreases the efficacy of LSP-induced compressive residual stress (CRS), plastic-affected depth.

Publication:
1. Efficacy of Laser Shock Peening Post-milling: A Semi-numerical Study. Journal of Materials Engineering and Performance., 2024, 33:4106-4113

Effect of anisotropy on the ductile fracture in metal reinforcements of brittle matrix Finite element simulations of rods
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We explore a wide range of Multiscale and Multiphysics phenomena, from designing smart fabrics to smart nano/micro

Norm. macroscopic Stress , 22/oy

1. Small voids (f, <10*) undergo cavitations, while large undergo void growth i p Py metamaterials without using piezoelectric materials.

Initial void volume fraction, log( f; )

2. Critical cavitation Stress, fracture energy, and the total energy absorbed are directional dependent. Our focus lies in performing finite element simulations of one-dimensional structures undergoing large rotations of the cross-

Publicati sections. We are highly interested in simulating electromechanical coupled problems using our in-house codes.
upication:

1. Effect of anisotropy on the ductile fracture in metal reinforcements of brittle matrix composites. Theoretical and Applied Fracture Mechanics. April 2021, 102923 The architected metamaterial develop ed using mathematical I‘igOI‘ can be utilized for next- gen light Weight applications
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